skip to main content


Search for: All records

Creators/Authors contains: "Lammert, Paul E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Informed by an abstraction of Kohn–Sham (KS) computation called a KS machine, a functional analytic perspective is developed on mathematical aspects of density functional theory. A natural semantics for the machine is bivariate, consisting of a sequence of potentials paired with a ground density. Although the question of when the KS machine can converge to a solution (where the potential component matches a designated target) is not resolved here, a number of related ones are. For instance: can the machine progress toward a solution? Barring presumably exceptional circumstances, yes in an energetic sense, but using a potential-mixing scheme rather than the usual density-mixing variety. Are energetic and function space distance notions of proximity-to-solution commensurate? Yes, to a significant degree. If the potential components of a sequence of ground pairs converges to a target density, do the density components cluster on ground densities thereof? Yes, barring particle number drifting to infinity.

     
    more » « less
  2. Abstract

    We present a treatment of the triangular lattice antiferromagnetic Ising model (TAFIM) based on a small number of elementary ideas common to statistical and solid-state physics. The TAFIM is represented as a reduced BCS model in one space, one (imaginary) time dimension. The representation is approximate for nonzero temperature, but allows quick derivation of asymptotically exact thermodynamic functions, and the divergence of the spin–spin correlation length. The fermionic representation is exact at zero temperature. We demonstrate the existence of a two-dimensional continuum of zero-temperature equilibrium macrostates characterized by satisfied bond fractions of the three different orientations, and calculate their entropy densities.

     
    more » « less